Projected Changes in California's Forests due to Climate Change

Rebecca Shaw and co-authors

Presented by Dick Cameron, Senior Conservation Planner, The Nature Conservancy California Program

ARB Forest Inventory Symposium October 19, 2009

Outline

Project overview

Methods and approach

Results for forest extent and carbon stocks

Implications for forest inventory and monitoring

Project Overview

- Part of CEC-PIER studies for Climate Action Team report to Governor and Legislature, 2009; The Impact of Climate Change on California's Ecosystem Services, R. Shaw et al.
- Looked at changes in multiple services under three AOGCMs and two emissions scenarios (A2, B1) and economic implications of changes
- Services included forest carbon, forage production, freshwater for salmon fishery and snow recreation; and biodiversity

Climate Models and Emissions Scenarios

 Chose a range of models that perform well in CA and that bracket potential future climate

Cayan et al. 2009

- Warm, wet climate- NCAR-PCM1 (Washington et al. 2000)
- Hot, dry climate- GFDL-CM2.1
 (Delworth et al 2006), NCAR-CCSM3
 (Collins et al 2006)
- A2 (business as usual) and B1 (very optimistic) emissions scenarios to 2100

Vegetation and Carbon Model

- MC1 Dynamic Global Vegetation Model (DGVM)
 (Bachelet et al 2001) combination of MAPPS
 biogeography model (Neilson 1995) and CENTURY
 (Parton et al. 1994) biogeochemistry model
- Uses soil characteristics, climate data and reference data on nutrient cycling, fire, plant growth and decomposition to model coarse vegetation types and associated productivity, carbon pools, and fire frequency

Vegetation and Carbon Model, cont.

- 1/8 degree grid cells (~12.5 km)
- Fire model periodically consumes biomass when fuel and climate factors are conducive
- Six carbon pools modeled (ag/bg live woody, ag/bg live grass, soil, ag dead)
- Various attributes summarized within 30 yr averages- (2005 2034; 2035 2064; 2070 2100)

Large increase in shrublands, hardwood forest

Net change in aboveground live tree carbon stored by the end of the century (2070–2099 mean)

Why these changes?

- Increases in fire frequency and extent, drought stress and temperature changes triggering land cover changes results in decreased forest carbon for hot, dry models
- Warm, wet future climate (PCM) shows increase in forest productivity and biomass growth

Implications for forest target and inventory/monitoring

- Various approaches have been used to look at forest productivity (process, physiological, demographic) at various scales, more synthesis studies needed to develop more complete picture of carbon stock changes
- Shifting baseline problem: do you adjust expectations?

Implications for forest target and inventory/monitoring

- Toward end of century, variability between emissions scenarios becomes pronounced
- Model does not factor in management activities, e.g. that could minimize losses due to fire
- Provides opportunity to align changes in forest carbon with management opportunities that promote climate change adaptation

Acknowledgements

Co-authors: M. Rebecca Shaw, Linwood Pendleton, Belinda Morris, Greg Bratman, Dominique Bachelet, Kirk Klausmeyer, Jason MacKenzie, Dave Conklin, James Lenihan, Erik Haunreiter and Chris Daly

CEC-PIER program for support

http://www.energy.ca.gov/2009publications/CEC-500-2009-025/CEC-500-2009-025-F.PDF

